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Knowledge Base Refinement as Improving an

Incorrect and Incomplete Domain Theory

David C. Wilkins

Department of Computer Science
University of Illinois

405 North Mathews Ave
Urbana, IL 61801

Abstract

The ODYSSEUS program automates knowledge-base refinement by improving a do-

main theory. This paper describes the techniques used by ODYSSEUS to address three types

of domain theory pathologies: incorrectness, inconsistency, and incompleteness.

In ODYSSEUS, an incomplete domain theory is extended by the metarule chain com.

pletion method. This method exploits the use of an explicit metalevel representation of the

strategy knowledge for a generic problem class (e.g., heuristic classification) that is sepa-

rate from the domain theory (e.g., medicine) to be improved. Our work implements and

compares the extension of an incomplete domain theory using case-based inductive learning

and explanation-based apprenticeship learning; in the latter, learning occurs by completing

failed explanations of observed human problem-solving actions. Extending an incomplete

domain theory and correcting an incorrect domain theory both use the confirmation deci-

sion procedure method, which validates arbitrary instantiated tuples of the knowledge base

by the use of an underlying domain theory. Lastly, the consistency of the knowledge base

is improved by use of the sociopathic reduction algorithm.
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1 Introduction

A central problem of expert systems is knowledge-base refinement (Buchanan and Shortliffe,

1984). Numerous research efforts have addressed the problem of improving an expert system
that solves heuristic classification problems. The major research projects that have directly

confronted this problem include the interactive semi-automatic approaches of TEIRESIAS

(Davis, 1982), AQUINAS (Boose, 1984), and MORE (Kahn et al., 1985). They also include the

automatic case-based inductive methods of INDUCE (Michalski et al., 1983), ID3 (Quinlan,

1983), SEEK2 (Ginsberg et al., 1985), and RL (Fu and Buchanan, 1985), which perform

empirical induction over a library of test cases. This chapter describes a new approach

to the refinement problem that involves a combination of failure-driven explanation-based

learning and the use of underlying domain theories. Our approach is embodied in the

ODYSSEUS learning program; ODYSSEUS contains specific (and separate) methods to address3 automatically three types of knowledge base pathologies: incorrectness, inconsistency, and

incompleteness (Wilkins, 1987).

I The remainder of this paper is organized as follows: Section 1.2 describes the MINERVA

expert system shell that was specifically designed to facilitate failure-driven explanation-

based learning. Our experience has shown that a sophisticated expert system architecture

can provide an enormous amount of leverage to a learning program. Section 1.3 describes

the apprenticeship learning methods used by ODYSSEUS to extend an incomplete domain

thecry; the key idea used to extend an incomplete domain theory is called the metarule

chain completion method. Section 1.4 describes the methods used by ODYSSEUS to correct

an incorrect domain theory; our approach to dealing with an incorrect domain theory is

called the confirmation decision procedure method. Section 1.5 discusses the method used

to remove certain types of inconsistencies from a correct but inconsistent domain theory;

this m-thod is called the sociopathic reduction algorithm. Section 1.6 presents results of a

wide range of evaluation experiments that have been carried out, and Section 1.7 describes

5 related research.

1 2 MINERVA Classification and Design Shell

I The ODYSSEUS learning program can improve any knowledge base crafted for the MIN-

ERVA expert system shell; its overall organization is shown in Figure 1 (Park et al., 1989).3 MINERVA is a refinement of HERACLES, based on the experience gained in creating the ODY-

SSEUS apprenticeship learning program for HERACLES (Wilkins, 1987). HERACLES is itselfI
I
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a refinement of EMYCIN, based on the experience gained in creating the GUIDON case-based

tutoring program for EMYCIN (Clancey, 1986). These shells use a problem-solving method

called heuristic classification, which is the process of selecting a solution out of a preenu-

merated solution set, using heuristic techniques (Clancey, 1985). The primary application

knowledge base for MINERVA and HERACLES is the NEOMYCIN medical knowledge base

for diagnosis of meningitis and similar neurological disorders (Clancey, 1984). This section

describes the types of knowledge encoded in MINERVA and HERACLES, and how MINERVA

differs from HERACLES.

Meta-Interpreter ATMS

Inference Engine

Scheduler Metarules

Opportunistic Blackboard SchedulerI
Heuristic Classification VLSI Hierarchical Design

Metarules Metarules

Meta-Level Strategy Knowledge

Domain Domain Derived Dynamic
Rules Facts Facts Facts

Declarative Domain Knowledge

Figure 1: MINERVA System Architecture.

Domain knowledge consists of MYCIN-like rules and simple frame knowledge for an

application domain such as medicine or geology. An example of rule knowledge in Horn

clause format is conclude(migraine-headache, yes, .5) :- finding(photophobia, yes), meaning

'to conclude the patient has a migraine headache with a certainty .5, determine if the

patient has photophobia.' An example of frame knowledge is subsumed-by(viral-meningitis,

meningitis), meaning 'hypothesis viral meningitis is subsumed by the hypothesis meningitis.'
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Problem-state knowledge is generated during execution of the expert system. Examples of

problem- state knowledge are rule.applied(rule163), which says that rule 163 has been applied

during this consultation, and differential(migraine-headache, tension-headache), which says

that the expert system's active hypotheses are migraine headache and tension headache.

Strategy knowledge is contained in the shell, and it approximates a cognitive model

of problem solving. For heuristic classification problems, this model is often referred to as

hypothesis-directed reasoning (Elstein et al., 1978). The different problem-solving strategies

that can be employed during problem solving are explicitly represented, which facilitates

use of the model to follow the line of reasoning of a human problem solver. The strategy

knowledge determines what domain knowledge is relevant at any given time, and what

additional information is needed to solve the problem. The problem-state and domain

knowledge, including rules, are represented as tuples; and strategy metarules are quantified

over these tuples.

The strategy knowledge needs to access the domain and problem-state knowledge.

To achieve this, the domain and problem-state knowledge is represented as tuples. Even

rules are translated into tuples. For example, if rule 160 is conclude(hemorrhage yes .5) :-

finding(diplopia yes) A finding(aphasia yes), it would be translated into the following four

tuples: evidence.for(diplopia hemorrhage rule160 .5), evidence.for(aphasia hemorrhage rule-

160 .5), antecedent(diplopia rule160), antecedent(aphasia, rule160). Strategy metarules are

quantified over the tuples. Figure 4 presents four strategy metarules in Horn clause form;

the tuples in the body of the clause quantify over the domain and problem-state knowledge.

The rightmost metarule in Figure 4 encodes the strategy to find out about a symptom by

finding out about a symptom that subsumes it. The metarule applies when the goal is to

find out symptom P1, and there is a symptom P2 that is subsumed by P1, and P2 takes

Boolean values, and it is currently unknown, and P2 should be asked about instead of being

derived from First principles. This is one of eight strategies in HERACLES that is also used

in MINERVA for finding out the value of a symptom; this particular strategy of asking a

more general question has the advantage of cognitive economy: a 'no' answer provides the

answer to a potentially large number of questions, including the subsumed question.

2.1 The Evolution from Heracles to Minerva

MINERVA is a reworking of HERACLES, similar to the way that HERACLES is a reworking

of EMYCIN. The ultimate objective in both these efforts has been a more declarative and

modular representation of knowledge. This facilitates construction of a learning program to
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examine and reason about the knowledge structures of the metalevel strategy in the expert

system, to interpret better a user's strategy in terms of the metalevel strategy knowledge

in the expert system, and to allow the same shell to encode strategy knowledge for the

generic problem tasks of analysis (e.g., heuristic classification) and synthesis (e.g., VLSI

circuit design).

There are four principal differences between MINERVA and HERACLES at the strategy

level. In determining which task to perform next, HERACLES uses a fixed order goal tree;

by contrast MINERVA employs an opportunistic blackboard scheduler. This facilitates in-

terpreting a user's strategy in terms of the expert system's strategips, and better integrates

top-down and bottom-up strategic reasoning. Second, in controlling metalevel reasoning,

HERACLES uses dynamic control flags and variables, such as task end conditions. In MIN-

ERVA, a pure functional programming style and a deliberation-action loop have been used;

this eliminates all flags and variables at the strategy level. So in MINERVA, the system

state is completely determined by domain-level static and dynamic knowledge. Third, in

HERACLES, strategy metarule premises sometimes change the state of the system, invoke

subgoals, and use procedural attachment to LISP code; and HERACLES strategy metarule

actions can invoke several goals. In contrast, MINERVA metarules do not follow any of

these practices, which allows a pure deliberation-action cycle for strategic reasoning. The

MINERVA style of metarules reduces side effects, thus making it easier for the learning pro-

gram to reason about the strategy knowledge. Fourth, in MINERVA, more of the meta-level

code in the expert system, such as the rule interpreter code, has been encoded in strategy

metarules.

Other changes are as follows: The MINERVA system is completely implemented in

PROLOG; by contrast, HERACLES uses a combination of PROLOG-like clauses with proce-

dural attachment to LISP for each of the PROLOG clause predicates in metarules. The

more uniform representation in MINERVA moves us toward our long-term goal of allowing

a learning program to reason about all knowledge structures in the expert system shell.

MINERVA incorporates an ATMS to maintain consistency of the knowledge base, uses a logic

metainterpreter, and supports both certainty factors and Pearl's method to represent rule

certainty and for propagation of information in a hierarchy of diagnostic hypotheses (Pearl,

1986b; Pearl, 1986a). As can be seen, all of the changes that mentioned have resulted in a

more declarative and functional knowledge representation.
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3 Odysseus's Method for Extending an Incomplete Domain

Theory

We have developed two methods for extending an incomplete domain theory: an apprentice-

ship learning approach and a case-based reasoning approach. This section will only describe

the former approach. Table 1 shows the major refinement steps and the method of achieving

them for apprenticeship and case-based learning. The techniques will be elaborated below.

The solution approach of the ODYSSEUS apprenticeship program for extending an

incomplete domain theory in a learning-by-watching scenario is illustrated in Figure 2. As

Figure 2 shows, the learning process involves three distinct steps: detect domain theory

deficiency, suggest domain theory repair, and validate domain theory repair. This section

defines the concept of an explanation and then describes the three learning steps.

The main observable problem-solving activity in a diagnostic session is finding out

values of features of the artifact to be diagnosed-we refer to this activity as asking findout

questions. An ezplanation in ODYSSEUS is a proof that demonstrates how an expert's find-

out question is a logical consequence of the current problem state, the domain and strategy

knowledge, and one of the current high-level strategy goals. An explanation is created by

backchaining the metalevel strategy metarules; Figure 4 provides examples of these meta-

rules represented in Horn clause form. The backchaining starts with the findout metarule

and continues until a metarule is reached whose head represents a high-level problem-solving

Learning Case-Based Learning Apprenticeship Learning

Method (similarity- based) (explanation- based)

Scope Heuristic rules. Heuristic rules.
4 types of frame knowledge.

Detect KB Select and run a case. Observe expert solving a case.
deficiency Deficiency exists if Deficiency exists if action of

case is misdiagnosed. expert cannot be explained.
Suggest KB Generalize or specialize Find tuples that allow

repair rules. Induce new rules. explanations to be completed

under single fault assumption.
Validate KB Use underlying domain Use underlying domain theory

repair theory to validate repairs. to validate repairs.

Table 1: Comparison of case-based and apprenticeship learning method for extending an incomplete
domain theory.
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goal. To backchain a metarule requires unification of the body of the Horn clause with do-

main and problem-state knowledge. Examples of high-level goals are: to test a hypothesis,

to differentiate between several plausible hypotheses, to ask a clarifying question, and to

ask a general question.

Apprenticeship learning is a form of learning by watching, in which learning occurs as

a by-product of building explanations of human problem-solving actions. An apprenticeship

is the most powerful method that human experts use to refine and debug their expertise in

knowledge-intensive domains such as medicine. The major accomplishment of our method of

apprenticeship learning is a demonstration of how an explicit representation of the strategy

.._.__ [ Observe

Human Action

Detect Explntionl - , kStretegy Knowledge)
Domain Theory

Deficiency I
p l an tio n A p p lic i

oud! [ Do-in Theo ry

Suggest Conjecture Knowledge

Domain Theory That Complete.

Repair an Explanation

JustiiedDecision P ocedure]

EvaluAte
Domain Theory

Repair ) Yes

Modfy Appicato neryn
Domain Theory Domain Theory

Figure 2: Overview cf Odysseus' method for extending an incomplete domain theory in a learning-
by-watching apprentice situation. This paper describes techniques that permit automation of each
of the three stages of learning shown on the left edge of the figure. An explanation is a proof that
shows how the expert's action achieves a problem-solving goal.
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knowledge for a general problem class, such as diagnosis, can provide a basis for learning

the knowledge that is specific to a particular domain, such as medicine.

3.1 Detection of Knowledge Base Deficiency

The first stage of learning involves the detection of a knowledge base deficiency. An ex-

pert's problem solving is observed and explanations are constructed for each of the observed

problem-solving actions. An example will be used to illustrate our description of the three

stages of learning, based on the NEOMYCIN knowledge base for diagnosing neurology prob-

lems. The input to ODYSSEUS is the problem-solving behavior of a physician, John Sotos, as

shown in Figure 3. In our terminology, Dr. Sotos asks findout questions and concludes with

a final diagnosis. For each of his actions, ODYSSEUS generates one or more explanations of

his behavior.

When ODYSSEUS observes the expert asking a findout question, such as asking if the

patient has visual problems, it finds all explanations for this action. When none can be

Patient's Complaint and Volunteered Information:

1. Alice Ecila, a 41 year old black female.

2. Chief complaint is a headache.
Physician's Data Requests:

3. Headache duration?

focus=tension headache. 7 days.

4. Headache episodic?

focus=tension headache. No.
5. Headache severity?

focus=tension headache. 4 on 0-4 scale.
6. Visual problems?

focus=subarachnoid hemorrhage. Yes.

7. Double vision?

focus=subarachnoid hemorrhage, tumor. Yes.

8. Temperature?

focus=infectious process. 98.7 Fahrenheit.

Physician's Final Diagnosis:

25. Migraine Headache.

Figure 3: An example of what the Odysseus apprentice learner sees. The data requests in this
problem-solving protocol were made by John Sotos, M.D. The physician also provides information
on the focus of the data requests. The answers to the data requests were obtained from an actual
patient file from the Stanford University Hospital, extracted by Edward Herskovits, M.D.
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found, an explanation failure occurs. This failure suggests that there is a difference between

the knowledge of the expert and the expert system and it provides a learning opportunity.

The knowledge difference may lie in any of the three types of knowledge that we have

described: strategy knowledge, domain knowledge, or problem state knowledge. Currently,
ODYSSEUS assinies that the cause of the explanation failure is that the domain knowledge is

deficient. In the current example, no explanation can be found for findout question number
7 in figure 3 (asking about visual problems), and an explanation failure occurs.

3.2 Suggesting a Knowledge Base Repair

The second step of apprenticeship learning is to conjecture a knowledge base repair. A

confirmation theory (which will be described in the discussion of the third stage of learning)

can judge whether an arbitrary tuple of domain knowledge is erroneous, independent of the

other knowledge in the knowledge base.

The search for the missing knowledge begins with the single fault assumption. It
should be noted that the missing knowledge is described conceptually as a single fault, but

because of the way the knowledge is encoded, we can learn more than one tuple when we

Group Hypotheses Test Hypothesis Applyrule Findout

Strategy Metarule Strategy Metarule Strategy Metarule Strategy Metarule

goal(group-hyp(HI ,H2)) goal(test-hyp(H2)) goal(applyrule(Rl)) goal(findout(Pl))

:- differential(H 1), concluded-by(HI,R1), not( rule- applied(l I)), subsumes(P2,P 1),

taxonomic(H i). not(pursued(I1)), inprernise(P1 ,R1), not(concluded(P1)),

parent(H2,H1), inpremise(P1 Ri), evid-for(P1,H2,R1SI), boolean(P2),

not pursued(H2), goal(applyrule(Rl)). soft-datum(P1), not(concluded(P2)),

closest-common- not(concluded(P1)), ask-user(P1).

ancestor(H2,H1), goal(findout(P1)),

not(root ( H2)), applyrule.forward( R 1).

goal(test- hyp( H2)).

Figure 4: Learning by completing failed explanations. The illustrated strategy-level Horn clause
metarules can chain together to form an explanation of how the the findout action of ask-user(PI)
relates to the high-level goal of group-hypoth(HI,H2). In this particular case, all the tuples in the
chain cannot be instantiated with domain knowledge. Odysseus' attempts to complete this and
other failed explanation chains by adding domain knowledge to the knowledge base so that all the
tuples unify.



learn rule knowledge. For ease of presentation, this feature is not shown in the following

examples.

Conceptually, the missing knowledge could be eventually identified by adding a ran-

dom domain knowledge tuple to the knowledge base and seeing whether an explanation

of the expert's findout request can be constructed. How can a promising piece of such

knowledge be effectively found? Our approach is to apply backward chaining to the findout

question metarule, trying to const.uct a proof that explains why it was asked. When the

proof fails, it is because a tuple of domain or problem-state knowledge needed for the proof

is not in the knowledge base. If the proof fails because of problem-state knowledge, we

look for a different proof of the findout question. If tLe proof fails because of a missing

piece of domain knowledge, we temporarily add this tuple to the domain knowledge base.

If the proof then goes through, the temporary piece of knowledge is our conjecture of how

to refine the knowledge base.

Figure 4 illustrates one member of the set of failed explanations that ODYSSEUS exam-

ines in connection with the unexplained action, ask-user(visual problems), that is contained

in the tail of the rightmost metarule. These strategy metarules create a chain between the

high-level goal in the head of the leftmost metarule, group-hypotheses(Hypothesisl, Hypothe-

sis2) and the low-level observable action in the tail of the rightmost metarule ask-user(visual

problems). Note that this chain is but one path is a large explanation graph that connects

the observable action of asking about visual problems to all high-level goals. Each path

in the graph is a potential explanation, and each node in a path is a strategy metarule.

The failed explanation that ODYSSEUS is examining consists of the four metarules shown in

Figure 4: Group Hypotheses, Test Hypothesis, Applyrule, and Findout. For a metarule to

be used in a proof, its variables must be instantiated with domain or problem state tuples

that are present in the knowledge base. In this example, the evidence.for tuple is responsi-

ble for the highlighted chain not forming a proof. It forms an acceptable proof if the tuple

evidence.for(photophobia acute.meningitis $rule $cf) or evidence.for(diplopia acute.meningitis

$rule $cf) is added to the knowledge base. During the step that generates repairs, neither

the form of the left-hand side of the rule (e.g., number of conjuncts) or the strength is

known. In the step to evaluate repairs, the exact form of the rule is produced in the process

of evaluation of the worth of the tuple.
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3.3 Validation of Knowledge Base Repair

The task of the third step of apprenticeship learning is to evaluate the proposed repair. To

do this, we use the confirmation decision procedure (CDP) method. CDPs are constructed for

each type of tuple in the domain theory, and can determine if the tuple is an acceptable tuple.

Of the 19 different types of tuples in the Neomycin knowledge base, we have implemented

CDPs for three of them: evidence.for, clarifying.question, and ask.general.question tuples. In

addition to their use for validating knowledge base repairs, CDPs are also used to modify

or delete incorrect parts of the initial domain theory; they are described in greater detail

in Section 4.

Evidence.for tuples were generated in the visual problems example. In order to confirm

the first candidate tuple, ODYSSEUS uses an empirical induction system that generates

and evaluates rules that have photophobia in their premise and acute meningitis in their

conclusion. A rule is found that passes the rule 'goodness' measures, and it is automatically

added to the object-level knowledge base. All the tuples that are associated with the rule

are also added to the knowledge base. This completes our example.

The CDP method also validates frame-like knowledge. An example of how this is

accomplished will be described for clarify question tuples, such as clarify.questions(head-

ache-duration headache). This tuple means that if the physician discovers that the patient

has a headache, she should always ask how long the headache has lasted. The confirmation

theory must determine whether headache duration is a good clarifying question for the

'headache' symptom. To achieve this, ODYSSEUS first checks to see if the question to be

clarified is related to many hypotheses (the ODYSSEUS explanation generator allows it to

determine this), and then tests whether the clarifying question can potentially eliminate a

high percentage of these hypotheses. If these two criteria are met, then the clarify questions

tuple is accepted.

4 Odysseus's Method for Improving an Incorrect Domain

Theory

The main focus of this chapter is on extending an incomplete domain theory via apprentice-

ship learning. However, it is clearly helpful if we are extending a domain theory that is

correct and consistent. This section describes the methods that we have developed to im-

prove the correctness of the domain theory. These methods are applied to the domain
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theory prior to the use of apprenticeship learning.

The key to addressing the problem of incorrect knowledge is the use of the confir-

mation decision procedure (CDP) method, which connects tuples in the domain theory to

underlying theories of the domain that are capable of judging their correctness. In this

approach, a CDP is created for each type of domain theory tuple in the knowledge base.

Given an arbitrary instantiated tuple, the CDP calculates whether the tuple is true or false.

In some cases the CDP can suggest how the tuple can be modified so as to make it true.

Of the 19 different types of domain theory tuples in che NEOMYCIN domain theory,

we have created CDP's for three types of tuples. Theses tuples comprise approximately

70% of all tuples in the domain theory. For example, a CDP has been implemented for

evidence.for tuples. These tuples are derived from the heuristic domain rules provided by a

user that relate evidence to hypotheses. Validating evidence.for tuples therefore consists of

validating the heuristic associational rules in the knowledge base.

The CDP for evidence.for consists of an induction system, a set of rule biases, and

a representative case library for the application domain. It accepts or rejects heuristic

rules, whether they are rules in the initial knowledge base or rules conjectured during

apprenticeship learning. In addition to accepting or rejecting rules, the CDP for evidence.for

can modify a given rule to make it correct; it does this by adding conjuncts or modifying

the rule strength. A rule can be modified to be "correct" by using probability and decision

theory and representative sets of cases to to determine its correct weight or strength (in

contrast to trusting the weight provided by the user). If a rule lacks sufficient strength, the

CDP will try to add conjuncts to the rule to increase its specificity.

When given an evidence.for tuple, its corresponding heuristic associational rule, which

is indicated by the third argument of the evidence.for relation, is tested in five ways by the

evidence.for CDP. A test for rule simplicity ensures that the number of antecedent conditions

of the rules are less than the specified number. The test for strength accepts rules whose

certainty factors (CF) are greater than a threshold value. The third bias is to test the

generality of the rules. It succeeds only if the rules cover a certain percentage of the cases

in a representative case library. The test for colinearity ensures that the proposed rules are

not similar to any existing rules in performing classification of the induction set of cases.

Finally the bias for uniqueness will check that the rules fire on a training case and there

exist no rules in the current domain rule set that also succeed for that case. Good rules

are those recommendations that pass the verification process. This rule may then be added

into the system.
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It is often difficult to create CDPs for some types of tuples in the domain theory. For

example, consider the tuple type askfirst(Parm). This tuple says that a particular feature

of the system being diagnosed should be obtained from a user instead of derived from

first-principles. It is difficult to imagine how to do this for an arbitrary feature, although

eventually a way must be found if knowledge acquisition is to be completely automated.

Note that most knowledge bases are much more heterogeneous than LEAP, a learn-

ing apprentice for acquiring a domain theory that consists of VLSI circuit implementation

rules. In this system, the domain theory only contains implementation rules (in our par-

lance, only contains one type of domain tuple). LEAP can verify the implementation rules

using Kirkhoff's laws as its underlying domain theory. The challenge of using this idea

for kno,-ledge-base systems is that most domain theories contain many different types of

domain knowledge, not just one type as in LEAP.

The CDPs were originally constructed to validate repairs during apprenticeship learn-

ing. However, they nicely allow the initial knowledge base to be validated prior to apprentice-

ship learning. As will be reported in Section 1.6, about half of the existing knowledge base

is modified during the processing stage that focuses on ensuring that the domain theory

contains correct knowledge.

5 Odysseus's Method for Improving an Inconsistent Do-

main Theory

A processing stage prior to apprenticeship learning also removes a form of inconsistent

knowledge from the domain theory, which is responsible for deterioration of the performance

of the system due to sociopathic interactions between elements of the domain theory. A

domain theory is sociopathic if and only if (1) all the rules in the knowledge base individ-

ually meet some "goodness" criteria; and (2) a subset of he knowledge base gives better

performance than the original knowledge base. The five biases described in Section 1.4

provide an example of goodness criteria for heuristic rules in the domain theory.

The significance of the phenomena of sociopathicity is as follows. First, most extant

expert systems have sociopathic knowledge bases. Second, traditional methods to correct

missing and wrong rules, e.g., the general TEIRESIAS approach (Davis, 1982), cannot handle

the problem. Third, sociopathicity imposes a limit on the quality of knowledge base perfor-

mance. And last, it implies that some kind of global refinement for the acquired knowledge
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is essential for machine learning systems.

The phenomena of sociopathicity is addressed at length in another paper, wherein

we show that the best method for dealing with this form of inconsistency is to find a subset

of the original domain theory that is not sociopathic (which must exist by our definition of

sociopathicity). A summary of or results are as follows: The process of finding an optimal

subset of a sociopathic knowledge base is modeled as a bipartite graph minimization problem

and shown to be NP-hard. A heuristic method, the sociopathic reduction algorithm, has

been developed to find a suboptimal solution for sociopathic domain theories. The heuristic

method has been experimentally shown to give good results.

6 Related Research

6.1 Odysseus and Explanation-Based Learning

The ODYSSEUS apprenticeship learning method involves the construction of explanations,

but it is different from explanation-based learning as formulated in EBG (Mitchell et al.,

1986) and EBL (DeJong, 1986); it is also different from explanation-based learning in LEAP

(Mitchell et al., 1989), even though LEAP also focuses on the problem of improving a

knowledge-based expert system. In EBG, EBL, and LEAP, the domain theory is capable of

explaining a training instance, and learning occurs by generalizing an explanation of the

training instance. In contrast, in our apprenticeship research, a learning opportunity occurs

when the domain theory, which is the domain knowledge base, is incapable of producing an

explanation of a training instance. The domain theory is incomplete or erroneous, and all

learning occurs by making an improvement to this domain theory.

6.2 Case-Based versus Apprenticeship Learning

In empirical induction from cases, a training instance consists of an unordered set of feature-

value pairs for an entire diagnostic session and the correct diagnosis. In contrast, a training

instance in apprenticeship learning is a single feature-value pair given within the context of

a problem-solving session. This training instance is therefore more fine-grained, can exploit

the information implicit in the order in which the diagnostician collects information, and

allows obtaining many training instances from a single diagnostic session. Our apprentice-

ship learning program attempts to construct an explanation of each training instance; an
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explanation failure occurs if none is found. The apprenticeship program then conjectures

and tests modifications to the knowledge base that allow an explanation to be constructed.

If an acceptable modification is found, the knowledge base is altered accordingly. This is a

form of learning by completing failed explanations.

The case-based learning approach currently modifies or adds heuristic rules to the

knowledge base. It runs all the cases in the library and locates those that are misdiagnosed.

Given a misdiagnosed case, the local credit assignment problem is solved as follows: The
premises of the rules that concluded the wrong final diagnosis are weakened by specializa-

tion, and the premises of the rules that concluded the correct diagnosis are strengthened. If

this does not solve the problem, new rules will be induced from the patient case library that

apply to the misdiagnosed case and that conclude the correct final diagnosis. The verifica-

tion procedure used to test all knowledge base modifications is identical to that described

for apprenticeship learning.

7 Experimental Results

Our knowledge-acquisition experiments centered on improving the ProHCD shell containing

the NEOMYCIN knowledge base for diagnosing neurology problems. The initial NEOMYCIN

knowledge base was constructed manually over a 7 year period; the first test of this system

on a representative suite of test cases was performed in conjunction with the ODYSSEUS

system. The NEOMYCIN vocabulary includes 60 diseases; our physician, Dr. John Sotos,

determined that the existing data request vocabulary of 350 manifestations only allowed

diagnosis of 10 of these diseases. Another physician, Dr. Edward Herskovits, constructed a

case library of 115 cases for these 10 diseases from actual patient cases from the Stanford

Medical Hospital, to be used for testing ODYSSEUS. The test set consisted of 112 of these

cases.

Let us begin our performance analysis by considering the baseline system performance

prior to any ODYSSEUS knowledge base refinement. The expected diagnostic performance

that would be obtained by randomly guessing diagnoses is 10%, ani the performance ex-

pected by always choosing the most common disease is 18%. Version 2.3 of HERACLES

with the NEOMYCIN knowledge base initially diagnosed 31% of the cases correctly, which is

3.44 standard deviations better than always selecting the disease that is a priori the most

likely. On a student t-test, this is significant at a t = .001 level of significance. Thus we

can conclude that NEOMYCIN's initial diagnostic performance is significantly better than

guessing. Version 3.1 of ProHCD, with the manually constructed NEOMYCIN knowledge
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base, gave almost identical performance results; it initially diagnosed 32 of the 112 cases

correctly (28.5% accuracy).

Table 1.2 shows the various diseases and their sample sizes in the evaluation set. The

results of each test suite are described along three dimensions. TP (true-positive) refers

to the number of cases that the expert system correctly diagnosed as present, FN (false-

negative) to the number of times a disease was not diagnosed as present but was indeed

present, and FP (false-positive) to the number of times a disease was incorrectly diagnosed

as present.

Disease Number KB1 KB2
Cases

TF FN FP TP FN FP

Bacterial Meningitis 16 14 2 49 14 2 21
Brain Abscess 7 0 7 1 0 7 1
Cluster Headache 10 1 9 0 7 3 4

Fungal Meningitis 8 0 8 0 4 4 0
Migraine 10 4 6 6 1 9 0
Myco-TB Meningitis 4 0 4 2 4 0 0
Primary Brain Tumor 16 0 16 0 0 16 0
Subarach Hemorrhage 21 1 20 0 15 6 0
Tension Headache 9 7 2 5 7 2 6
Viral Meningitis 11 5 6 11 10 1 12

None 0 0 0 6 0 0 6

Totals 112 32 80 80 62 50 50

Table 2: Summary of MINERVA experiments. The KB1 column is the performance using the
manually constructed domain theory. KB2 shows performance after use of methods that correct an
incorrect domain theory.

7.1 Improving an Incorrect and Inconsistent Domain Theory

The first stage of improvement involves locating and modifying incorrect domain knowl-

edge tuples. Our method modified 48% of the heuristic rules in the knowledge base. The

improvement obtained using the refined knowledge base is shown in column KB2 of Ta-

ble 1.2; ProHCD diagnosed 62 cases correctly (55.3% accuracy), showing an improvement

of about 27%. The second stage of improvement involves correcting inconsistent domain

knowledge. No experimental results are reported here, although our methods have been

previously shown to lead to significant improvement (Wilkins and Ma, 1989).
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Disec.e Number KB3 KB4

TP FN FP TP FN FP

Bacterial Meningitis 21 12 4 4 14 2 13

Brain Abscess 7 5 2 15 1 6 0

Cluster Headache 10 7 3 4 8 2 0

Fungal Meningitis 8 3 5 0 3 5 0

Migraine 10 4 6 0 6 4 0

Myco-TB Meningitis 4 4 0 0 4 0 1

Primary Brain Tumor 16 0 16 0 3 13 0

Subarach Hemorrhage 21 16 5 2 16 5 3

Tension Headache 9 7 2 6 8 1 3

Viral Meningitis 11 10 1 6 10 1 12

None 0 0 0 7 0 0 7

Totals 112 68 44 44 73 39 39

Table 3: Summary of MINERVA experiments. KB3 and KB4 show the performance after using case-
based learning and apprenticeship learning, respectively, to extend the incomplete domain theory.

7.2 Extending Incomplete Domain Theory via Case-Based Reasoning

The third stage of improvement involves extending a correct but incomplete domain knowl-

edge base. Two experiments were conducted. The first used case-based learning; all the

cases were run, and two misdiagnosed cases in areas where the knowledge base was weak

were selected. The case-based learning approach was applied to these two cases. This

refinement, shown in column KB3 of Table 1.2, enabled the system to diagnose 68 cases

correctly (60.7% accuracy), showing an aggregate improvement of 32%.

7.3 Extending Incomplete Domain Theory via Apprenticeship Learning

The second experiment used apprenticeship learning. For use as a training set, problem-

solving protocols were collected by having Dr. Sotos solve two cases, consisting of approxi-

mately 30 questions each. ODYSSEUS discovered 10 pieces of knowledge by watching these

two cases being solved; eight of these were domain rule knowledge. These eight pieces of

information were added to the NEOMYCIN knowledge base of 152 rules, along with two
pieces of frame knowledge that classified two symptoms as 'general questions'; these are

questions that should be asked of every patient. This refinement, shown in column KB4
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of Table 1.2, enabled the system to diagnose 73 cases correctly (65.2% accuracy), an ag-

gregate improvement of about 37%. Compared to NEOMYCIN's original performance, the

performance of NEOMYCIN after improvement by ODYSSEUS is 2.86 standard deviations

better. On a student t-test, this is significant for t = .006. One would expect the improved

NEOMYCIN to perform better than the original NEOMYCIN in better than 99 out of 100

sample sets.

It is important to note that the improvement occurred despite the physician's only

diagnosing one of the two cases correctly. The physician correctly diagnosed a cluster

headache case and misdiagnosed a bacterial meningitis case. As is evident from examining

Tables 1.1 and 1.2, the improvement was over a wide range of cases, and the accuracy

of diagnosing bacterial meningitis cases actually decreased. These counterintuitive results

confirm our hypothesis that the power of our learning method derives from following the

line of reasoning of a physician on individual findout questions and is not sensitive to the

final diagnosis as is the case in learning by empirical induction from examples.

All of this new knowledge learned by apprenticeship learning was judged by Dr. Sotos

as plausible medical knowledge, except for a domain rule linking aphasia to brain abscess.

Importantly, the new knowledge was judged by our physician to be of much higher quality

than when straight empirical induction was used to expand the knowledge base, without

the use of explanation-based learning.

More experimental work remains. Our previous experiments with ODYSSEUS suggest

that the apprenticeship learning approach is better than a case-based approach for produc-

ing a user-independent knowledge base to support multiple problem-solving goals such as

learning, teaching, problem-solving, and explanation generation.

8 Conclusions

In this chapter, we presented the three distinct methods used by ODYSSEUS to improve a

domain theory.

Our method of extending an incomplete domain theory is a form of failure-driven

explanation-based learning, which we refer to as apprenticeship learning. Apprenticeship

is the most effective means for human problem solvers to learn domain-specific problem-

solving knowledge in knowledge-intensive domains. This observation provides motivation to

give apprenticeship learning abilities to knowledge-based expert systems. The paradigmatic
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example of an apprenticeship period is medical training, in which we have performed our

investigations.

With respect to the incomplete theory problem, the research described illustrates

how an explicit representation of the strategy knowledge for a general problem class, such
as diagnosis, provides a basis for learning the domain-level knowledge that is specific to a

particular domain, such as medicine, in an apprenticeship setting. Our approach uses a
given body of strategy knowledge that is assumed to be complete and correct with the goal

of learning domain-specific knowledge. This contrasts with learning programs such as LEX

and LP where the domain-specific knowledge (e.g., integration formulas) is completely given

at the start, and the goal of learning strategy knowledge (e.g., preconditions of operators)

(Mitchell et al., 1983). Two sources of power of the ODYSSEUS approach are the method of

completing failed explanations, called the metarule chain completion method, and the use of

a underlying domain theories to evaluate domain-knowledge changes via the confirmation

decision procedure method. Our approach complements the traditional method of empirical

induction from examples for refining a knowledge base for an expert system for heuristic

classification problems. With respect to learning certain types of heuristic rule knowledge,

empirical induction from examples plays a significant role in our work. In these cases,

an apprenticeship approach can be viewed as a new method of biasing selection of which

knowledge is learned by empirical induction.

An apprenticeship learning approach, such as described in this chapter, is perhaps

the best possible bias for automatic creation of a large 'user-independent' knowledge bases

for expert systems. We desire to create knowledge bases that will support the multifaceted

dim2nsions of expertise exhibited by some human experts, dimensions such as diagnosis,

design, teaching, learning, explanation, and critiquing the behavior of another expert.

The long-term objectives of this research are the creation of learning methods that

can harness an explicit representation of generic shell knowledge and that can lead to

the creation of a user-independent knowledge base that rests on deep underlying domain

models. Within this framework, this paper described specialized methods that address three

major types of knowledge base pathologies: incorrect, inconsistent, and incomplete domain

knowledge.
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